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Abstract

The construction of a host of interesting patterns over one and two dimen-
sions, as transformations of multifractal measures via fractal interpolating

functions related to simple affine mappings, is reviewed. It is illustrated that,

while space-filling fractal functions most commonly yield limiting Gaussian

distribution measures (bells), there are also situations (depending on the
affine mappings’ parameters) in which there is no limit. Specifically, the one-

dimensional case may result in oscillations between two bells, whereas the

two-dimensional case may give rise to unexpected circle map dynamics of an
arbitrary number of two-dimensional circular bells. It is also shown that, de-

spite the multitude of bells over two dimensions, whose means dance making

regular polygons or stars inscribed on a circle, the iteration of affine maps

yields exotic kaleidoscopes that decompose such an oscillatory pattern in a
way that is similar to the many cases that converge to a single bell.



1 Introduction

Recently, a multitude of interesting patterns (over one, two and three dimen-

sions) defined as transformations of multifractal measures via fractal interpo-
lating functions and the iterations of affine mappings have been uncovered.1−4

Within this framework, it has also been established that Gaussian (normal

distribution) patterns over one and two dimensions appear when the fractal

functions fill up space,5−7 and that a wide variety of exotic kaleidoscopes
decompose circular two-dimensional bells.8,9

The purpose of the present article is to show that, while the Gaussian limit

is the most common case, there are also interesting cases (depending on the
signs of some affine mapping parameters) in which there is no limiting conver-

gence to a single Gaussian bell, but rather oscillations among a multitude of

patterns that closely approximate bells. It is shown that whereas in the one-

dimensional case oscillations between two bells happen in one specific way, in
the two-dimensional case oscillatory behavior among several two-dimensional

circular bells may occur in two different ways that lead either to a roundabout

motion or a star-shaped criss-crossed movement of an arbitrary number n of
bells, for n > 2.

The organization of this paper is as follows. Given first is the mathemati-

cal construction of the interesting patterns over one dimension that may be

constructed via the notion of projections and the iteration of affine map-
pings. Next, the conditions needed to define a limiting Gaussian pattern are

explained followed by the specific scenario that would give rise to the limiting

oscillation between two bells. Having established the results in one dimen-

sion, the article then studies generalizations to two-dimensional Gaussians
to identify the relevant scenarios that define circle-map dynamics among a

host of circular bells that jointly sketch beautiful kaleidoscopes of such ever-

rotating attractors. The article ends with a summary and with some final
remarks.

2 Affine Mappings, Fractal Functions and Related Measures

The graph G of a fractal interpolating function, from x to y and passing

by N + 1 points on the plane {(xn, yn); x0 < . . . < xN , n = 0, 1, . . . , N}, is
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defined as the unique attractor of N affine maps as follows:10
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with the scaling parameters dn such that |dn| < 1, and with the other param-

eters, an, cn, en, and fn, satisfying the initial conditions:
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Equations (2) ensure that the attractor G exists and that it contains the

initial interpolating points. Such conditions also allow computing the param-
eters an, cn, en, and fn in terms of the scalings dn and the coordinates of the

interpolating points, via simple linear equations.10 At the end, a unique, and

hence deterministic, set G is found that turns out to have a fractal dimension
D ∈ [1, 2) that is given by the solution of:11

∑ |dn| aD−1
n = 1, if

∑ |dn| > 1 (3)

or that equals 1 otherwise.
In a practical setting, the graph of a fractal function is obtained sampling

the unique attractor point by point, starting the process at a point already in

G and progressively iterating the affine maps wn according to, for example,

the outcomes of independent “coin” tosses.11 As this process is carried out, it
happens that a unique invariant measure is also induced over G that reflects

how the attractor is being filled up. The existence of such a measure allows

computing unique (and fully deterministic) projections over the coordinates
x and y (say dx and dy) that turn out to have irregular shapes as found in a

variety of applications in geophysics and beyond.2−4

Figure 1 shows an example of these ideas for a fractal function that passes

by the three points {(0,0), (1/2,-0.35), (1,-0.2)}, when the scalings of the
two affine maps are d1 = -0.8 and d2 = -0.6. In addition to the graph of

the attracting fractal function f , the figure includes the implied projections

dx and dy of the unique measure over G when the corresponding mappings

w1 and w2 are iterated (15 million times) according to a 30-70% proportion,
using independent pseudo-random numbers, starting the process from the

mid-point (1/2,-0.35).
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As there is a lack of dependence of the coordinate y on x, i.e. as implied

by the zero value in the first component of the affine mappings (Equation
(1)), the measure dx is simply a deterministic binomial multifractal.12 The

measure dy, in turn, being related to dx via the deterministic self-affine fractal

function, is just the derived measure of dx via the function f and is, hence,

computed looking at all possible heights y and adding the corresponding
“probabilities” from “events” that emanate from x.3

As is seen in Figure 1, the ideas lead to very interesting and “random-

looking” measures dy, which as in the above example resemble, for instance,

a rainfall data set as a function of time.13 As multifractal measures have
been found relevant in studies of turbulence,14, the projection sets given by

these ideas, which turn out to perform a non-trivial fractional integration of a

simple parent multifractal measure over x, may be assigned an interpretation
as reflections or transformations of turbulence.15

3 The Plane-Filling Cases and the Gaussian Limit

When the interpolating points are equally spaced in x, all coefficients an

happen to be equal to 1/N and hence the fractal dimension D (Equation (3))

tends to 2 when the magnitudes of all the scalings dn’s tend to one. This
implies, considering all possible sign combinations on such scalings, that there

are 2N routes toward obtaining plane-filling fractal interpolating functions.

Figure 2 shows an example of such limiting notions for a fractal function
that passes by the three points {(0,0), (1/2, 1), (1,0)}, when the scalings of

the two required affine maps are d1 = 0.999 and d2 = -0.999 (the “plus-minus”

case) and when the two maps are iterated (50 million times) according to a

70-30% proportion. As may be seen, a Gaussian distribution appears as a pro-
jection from a simple multifractal measure, indicating that the plane-filling

fractal function has the ability to filter all the spikiness in dx to produce,

quite surprisingly, an ever-smooth dy.
This Gaussian limit turns out to be universal, as the same plane-filling

fractal interpolating function gives a bell from an arbitrary iteration scheme.7

For the aforementioned three interpolating points, if the two mappings are

iterated according to a p − q proportion, with q = 1 − p, then the resulting
bell simply has a mean µ equal to p. The result is yet more general as one
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may replace a simple binomial multifractal dx by any measure defined over

a continuum on x, to find yet another derived Gaussian limit.7

For the uniform measure in x, i.e. the 50-50% proportion with three

equally-spaced points in x, some analytical results have been already establi-

shed.7 In this scenario, the mean and variance are µ = 1/2 and σ2 =

1/(12 − 12z2), where d1 = −d2 = z and z tending to one. As the fractal
function fills-up the plane when z tends to one, i.e. as its range grows from

−∞ to ∞, the implied variance also goes to infinity. But, as shown in Table

1, computed using the Maple V symbolic language package with a precision of

250 digits, the first twelve standardized moments of the derived measure over
y, indeed converge, in an orderly manner, to the moments of the standard

bell (as included in the last column). A formal proof of the Gaussian result

for this case has already been presented and relies on showing (by induction)
that all standardized moments of dy converge to the moments of the standard

Gaussian measure.7

The “minus-plus” case (−d1 = d2 = z) turns out to yield a fractal in-

terpolating function that is just the mirror image of the one found via the
“plus-minus” case. As a consequence, when z tends to one, a simple multi-

fractal measure also yields a unique bell (but now with mean q = 1− p) and

the analytical results, just mentioned, also hold.
When d1 = d2 = z (the “plus-plus” case) the fractal interpolating func-

tion becomes a symmetric “cloud” built by successive mid-point additions

of powers of z starting with the aforementioned three interpolating points.9

This case yields a derived measure eventually defined over the range [0,∞)
whose mass progressively centers at infinity. For such a case, and for the 50-

50 proportion, one may compute analytically that, in the limit, the mean and

the variance are µ = 1/(2 − 2z) and σ2 = 1/(12 − 12z2) (the same variance
as before), which both tend to infinity as z tends to one. This turns out to

be a rather curious case, because the coefficient of variation (i.e. σ/µ) tends

to zero, indicating that in the limit the mass concentrates, with probability

one, at infinity. As presented in Table 2, the lower order moments happen to
behave in a manner (after standardization) that is progressively consistent

with a standard Gaussian distribution, but a complete proof of the Gaussian

limit is not available due to a lack of simplification on the required moment

formulas.

5



4 Oscillations Between Two Bells in One Dimension

Given the results presented in the previous section, consideration of the

“minus-minus” case (i.e. −d1 = −d2 = z) would also be expected to give
a Gaussian distribution in the limit when z tends to one. For such a case,

and for the interpolating points used before, the mean and the variance yield

µ = 1/4 and σ2 = 1/(12 − 12z2) (yet the same variance as before), and it

appears that a single bell is found by considering the first twelve standardized
moments as reported in Table 3. However, close examination of this case re-

veals that the limit does not contain just a single bell but rather oscillations

between two bells, as follows.
When a graph similar to Figure 2 (based on 50 million iterations of suitable

maps) is drawn for this case (not shown), the corresponding limiting bell-like

measure exhibits noticeably larger oscillations around the mode than what

is found for the “plus-minus” case. At first, this discrepancy appears to be a
matter of a lack of precision in the calculations due to a small number of “9”s

in say z = 0.999, but further studies revealed that such was not the case.

If the mean from all points within the fractal interpolating function are
computed, that is by following the binary tree of all successive (and equally

spaced) additions up to a given level n, one encounters oscillatory behavior

according to the formula:

µn =
2n + z(−2z)n

(2n+1 + 1)(z + 1)
. (4)

Hence, in the limit, when z tends to one, there happen to be two bells whose
means oscillate between 0 and 1/2, and therefore give an apparent average

of 1/4.

A similar study of the other sign combination cases (i.e. by layers) re-
veals convergence to a single mean, but the “minus-minus” case indeed yields

unexpected oscillations, irrespective of the interpolating points used in the

construction. As the non-standardized variance increases to infinity and as

the difference in means remains finite for such a case, the resulting mea-
sure appears to be a single bell but this turns out not to be so, despite the

information to the contrary implied by the first few moments in Table 3.
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5 Extensions to Three Dimensions

The expressions presented in Equations (1) and (2) may be extended to higher

dimensions so that they produce attracting fractal functions living in three
dimensions. Specifically, the graph G of a fractal interpolating function,

from x into the plane y− z and passing by N +1 points in three-dimensional

space {(xn, yn, zn); x0 < . . . < xN , n = 0, 1, . . . , N}, is defined as the unique

attractor of N affine maps as follows:11
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has L2-norm (i.e. the square root of the maximum eigenvalue of AT
nAn) less

than 1 and subject to the initial conditions
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As these generalized fractal functions, with fractal dimensions now ranging

from 1 to 3, are computed via iterations, such a process defines, once again,

a unique measure over the new graph G that may then be used to calculate a
joint derived measure dyz over the plane y−z based on a simple multifractal

measure dx over x.

Figure 3 shows an example, consonant with Figure 1, of a three-dimensional

fractal function that passes by the points {(0,0,0), (1/2,1,1), (1,0,0)} and with
parameters An (Equation 6) given by,

A1 =


 0 1/2

1/2 0


 , A2 =


 0 −1/2

1/2 0


 , (8)

that generates an interesting joint derived measure dyz and non-trivial marginal
measures dy and dz, that is over the y and z directions. As before, these sets

are obtained iterating the corresponding mappings w1 and w2 (Equation 5)
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based on 15 million iterations according to pseudo-random numbers, following

a 70-30% proportion that also yields a simple binomial multifractal measure
dx over x.

As may be appreciated, these ideas lead to a host of interesting, complex

and “random-looking” patterns dyz, which resemble sets found in geophysical

applications such as rainfall-radar spatial patterns and contaminant plumes
in ground waters.2,4,16 Surprisingly, the transformation of a turbulent-based

multifractal measure via a “simple” three-dimensional fractal interpolating

function encompasses the complex geometries of a class of natural sets and

such a result hence suggests that the notions may one day be useful in devising
a deterministic language for complexity.4,15

6 Space-Filling Cases and the Two-Dimensional Gaussian Limit

Increasingly space-filling fractal interpolating functions may be obtained as

‖An‖2 → 1 for all n. This leads, in polar coordinates (Equation 6), to the
conditions |r(j)

n | → 1, j = 1, 2; θ(1)
n → θ(2)

n + kπ, for any integer k.6 This

yields 4N possible paths towards space-filling functions when considering all

possible sign combinations on the new scaling parameters r(j)
n , as defined in

Table 4 for N = 2 affine mappings.
Figure 4 shows an example of such limiting notions for a fractal function

that passes by the aforementioned three points {(0,0,0), (1/2,1,1), (1,0,0)},
when the parameter matrices An take on the values,

A1 =


 0 0.999

0.999 0


 , A2 =


 0 −0.999

0.999 0


 , (9)

and when the two maps are iterated (15 million times) according to a 70-30%

proportion. As may be seen, a circular joint Gaussian distribution appears
as a projection from a simple multifractal measure, hence generalizing what

was previously encountered with two-dimensional fractal functions.

Even though a complete proof of the Gaussianity of the bell shown in Figure

4 is not available yet as formulas defy simplification, it shall be shown that
not all the sign combination cases in Table 4 result in unique bells over two

dimensions. Leaving aside cases that show oscillations, as the “minus-minus”

case in two dimensions, for a later section, the following are the trends that
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we have encountered for groups of sign combinations defined based on Table

4, and for the specific situation when θ1 = θ
(1)
1 = θ

(2)
1 and θ2 = θ

(1)
2 = θ

(2)
2 .

Grouping the 16 cases on the scalings into 4 groups: A = Cases[1, 7, 10, 16],

B = Cases[2, 4, 13, 15], C = Cases[3, 5, 12, 14], and D = Cases[6, 8, 9, 11], it

may be shown numerically (via suitable iterations) that the coefficient of

correlation, ρ, of their corresponding bells are as follows,
Group A: ρ = 0, except when θ1 = kπ, θ2 = lπ that give ρ = 1 or ρ = −1,

for k, l integers.

Group B: ρ = 0, except when θ1 = kπ that yields arbitrary correlation

ρ ∈ [−1, 1], which depends on θ2 and the interpolating co-
ordinates, for k integer.

Group C: ρ = 0, except when θ2 = lπ that gives arbitrary correlation

ρ ∈ [−1, 1], which depends on θ1 and the interpolating co-
ordinates, for l integer.

Group D: ρ = 0, except when θ = θ1 = θ2 + kπ that gives arbitrary

correlation ρ ∈ [−1, 1], which depends on θ and the in-

terpolating coordinates, for k integer.
Further numerical calculation of means and variances, over both the y

and z components, via iterations as well as by levels (as previously done on

the two-dimensional case), reveals that the most common derived measures
generated by the space-filling three-dimensional fractal functions are indeed

single circular bells (ρ = 0) that have finite means, and variances that grow

to infinity as the magnitude of the scalings tends to one.

There are, however, some noteworthy exceptions along the lines θ1 = kπ,
θ2 = kπ and θ1 = θ2 +kπ, for an integer k, that generalize what was reported

for the one-dimensional bell(s). The specific trends along such lines are as

follows.

1. For θ = θ1 = kπ: (a) all cases in groups A and C and cases 8 and 9 (from

group D) give a single circular bell having finite means; (b) cases 2 and
6 (from groups B and D, respectively) yield a single bell whose mean

converges to (∞,∞), while cases 4 and 11 (also from groups B and D)

result in another single bell whose mean converges to (∞,−∞); and (c)

cases 13 and 15 (from group B), which generate non-circular bells as a
function of θ, give two oscillating bells, as in the one-dimensional case.
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2. For θ = θ2 = kπ: (a) all cases in groups A and B and cases 8 and 9 give a

single circular bell with finite means; (b) cases 3 and 6 result in a single

bell centered at (∞,∞), whereas cases 5 and 11 yield bells with means

(−∞,∞); and (c) cases 12 and 14 result in two oscillating elliptical bells.

3. For θ = θ1 = θ2 + kπ: (a) all cases in groups B and C and cases 7 and 10

give a single circular bell with finite means; (b) cases 6 and 11 yield single

bells whose mean tends respectively to (∞,∞) and (∞,−∞); (c) cases 8

and 9, yielding non-zero correlation, correspond (contrary to the results
just reported for the other θ lines) to single bells with finite means; and

(d) cases 1 and 16 appear to converge to a single bell with finite means,

but close examination of the results reveal that they contain oscillatory
behavior that encompasses 2π/θ bells, as explained in the next section.

7 Multiple Bells and Their Circle Map Dynamics

When all scalings r(j)
n are positive (case 1) or negative (case 16), and when the

angles θ1 = θ
(1)
1 = θ

(2)
1 and θ2 = θ

(1)
2 = θ

(2)
2 are such that θ = θ1 = θ2 + kπ, for

k integer, one encounters seemingly only a single circular bell, but detailed

calculations by levels indicate that there are oscillations among a host of bells

depending on the angle θ.
As illustrated in Figure 5 for the “all plus” case with angles θ equal to 2π

over 3, 4, 5, 6, 7, and 8, the bell’s center travels following a circle, centered

at the apparent single mean, and in consonance with the simple circle map
φn+1 = φn+θ. As seen, the radius of such a circle increases as θ decreases, for

the line joining the points (0, 0) and (1/2, 1/2) is always inscribed within such

a circle. When 2π/θ = n, the circle map generates a regular polygon having

n sides and hence such a case corresponds to n bells that cycle (counter-
clockwise) in such a circle. When θ does not divide 2π, case 1 generates

infinitely many bells whose means travel in a circle.

Figure 6 shows what happens level by level in the “all minus” case. As may
be inferred, such a sign combination case also yields oscillations among several

bells, now consonant with the simple dynamics on a circle, φn+1 = φn +π−θ,

which result sometimes in simple polygons (for large angles θ) but most often

stars inscribed on a finite circle that contains, once again, the line joining the
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points (0, 0) and (1/2, 1/2). When 2π/θ = n and n > 6 all patterns are

stars and the simple map travels within the circle (clockwise) yielding sharp

oscillatory behavior on the means of the implied n bells. As before, this case

yields infinitely many bells when θ does not divide 2π.
It should be stressed that cases 1 and 16 only give many bells along the

line θ = θ1 = θ2 + kπ, for outside such the dynamics no longer happen along

a circle but rather are attracted towards a true center yielding, at the end, a
single bell with finite mean, as reported earlier.

8 Exotic Decompositions of Oscillatory Bells

As previously reported,8,9 when the aforementioned angles associated with the

two affine mappings θ1 and θ2 both divide 2π and when such are multiples

of one another, exotic kaleidoscopes of patterns end up decomposing single
bells in non-trivial manners.9 It happens that such a behavior turns out to

be valid not only for the cases that define single bells with finite means but

also for the two oscillatory cases explained in the previous section.
As an illustration, Figure 7 shows examples of the beautiful transient pat-

terns that decompose the oscillatory attractors for the two cases, when the

binary expansion of π is used to guide the iterations and when the scalings

have magnitudes equal to 1−ε with ε = 10−8. Remarkably, despite the cyclic
movement of the dancing bells, the patterns obtained do not exhibit within

them oscillations of any kind and (as in cases defining single bells) their suc-

cessive superposition gives an attractor that appears to define a single bell.9

9 Summary

This work has illustrated that the transformation of simple multifractal mea-

sures, via fractal interpolating functions (defined over two and three dimen-

sions and computed through the iteration of simple affine mappings), gives

rise to: (a) interesting and seemingly-random complex patterns if the dimen-
sion of the fractal function is “low,” and (b) limiting Gaussian or “closely”

Gaussian-like measures when the fractal functions fill up the space in which

they live.
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It has been explained how the nature of the limiting Gaussian measures

(the bells) turns out to depend on the sign combinations of the scaling pa-
rameters of the affine mappings, as follows. For the two-dimensional fractal

functions via the use of two mappings, there are four cases. Two of them,

the “plus-minus” and “minus-plus” cases, may indeed be proven to define

a Gaussian limit that prior to standardization has a finite mean. There is
a case, the “plus-plus” one, that appears also to converge to a Gaussian,

but such is substantially different as it has a mean that converges to infinity

(prior to standardization) and a coefficient of variation that tends to zero.

The remaining “minus-minus” case turns out to be surprising, for calculation
of all points within the fractal function, by levels, shows convergence to two

oscillating bells (with finite alternating means before standardization) rather

than just one.
For the three-dimensional fractal functions and via two affine mappings,

there are sixteen different sign combination cases. Whereas the most common

behavior obtained turns out to be convergence to a single circular Gaussian

distribution with finite means, there are also cases that mimic the results
obtained with the two-dimensional fractal functions. For instance, and similar

to the “plus-plus” case, there are cases that appear to lead to single bells that

drift to the corners of the four quadrants, and there are also sign combinations
that, as the “minus-minus” case, result in oscillations among several bells. In

regards to the latter, it has been shown, analyzing the process by levels, that

the “all plus” and “all minus” cases surprisingly lead to oscillations among an

arbitrary number of two-dimensional bells that follow circle-map dynamics
and that result in lovely transient kaleidoscopic patterns that decompose the

limiting attractors.

Acknowledgments This work was supported in part by the Director, Office

of Science, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231.

12



References

1. C. E. Puente, “Multinomial Multifractals, Fractal Interpolators, and the

Gaussian Distribution,” Phys. Lett. A 161, 441-447 (1992).

2. C. E. Puente, “A Fractal-Multifractal Approach to Geostatistics,” in
Geostatistics for the Next Century, ed. R. Dimitrakopoulos (Kluwer Aca-

demic Publishers, Dordrecht, 1994) pp. 476-487.

3. C. E. Puente, “A New Approach to Hydrologic Modeling: Derived Dis-
tributions Revisited,” J. Hydrol. 187, 65-80 (1996).

4. C. E. Puente, “A Universe of Projections: May Plato be Right?,” Chaos,

Solitons & Fractals 19, 241-253 (2004).

5. C. E. Puente, “Deterministic Fractal Geometry and Probability,” Int. J.

Bifurc. Chaos 4(6), 1613-1629 (1994).

6. C. E. Puente and A. Klebanoff, “Gaussians Everywhere,” Fractals, 2(1),
65-79 (1994).
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List of Figures

1. From a multifractal measure dx to a derived measure dy via a fractal

interpolating function f . (The scale in x is from 0 to 1, and the one in y

is from -0.38 to 0.06. The vertical scales in dx and dy are not given but
both measures are normalized so that they add up to one).

2. From a multifractal measure dx to a derived Gaussian measure dy via a

space-filling fractal interpolating function f .

3. From a multifractal measure dx to a joint derived measure dyz (with

marginals dy and dz) via a fractal interpolating function f from x to
y − z, shown in the x − y and x − z planes.

4. From a multifractal measure dx to a derived joint circular Gaussian

measure dyz via a space-filling fractal interpolating function f .

5. Oscillations on bell’s means computed by layers for “all positive” scalings

case. The angle θ takes on the values 2π/3, 2π/4, 2π/5, 2π/6, 2π/7, and
2π/8 (shown left to right and top to bottom).

6. Oscillations on bell’s means computed by layers for “all negative” scalings

case. The angle θ takes on the values 2π/3, 2π/4, 2π/5, 2π/6, 2π/7, and

2π/8 (shown left to right and top to bottom).

7. Selected exotic kaleidoscopic patterns inside oscillating bells. “All pos-
itive” scalings case (left) with parameters {0,0,0), (1/2,1,1), (1,0,0)},
θ1 = 2π/11, θ2 = 6π/11 and “all negative” scalings case (right) with

parameters {0,0,0), (1/2,1,-3), (1,5,0)}, θ1 = 2π/5, θ2 = π/5. Shown

patterns are made up of 20,000 dots.
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Table 1. Standardized central moments of dy for the plus-minus case.

Parameters: d1 = −d2 = z and {(0,0), (1/2, 1), (1,0)}.
Order z = 0.9999 z = 0.999999 z = 0.99999999 N (0, 1)

3 0.000000000 0.000000000 0.000000000 0.0
4 2.999365046 2.999993650 2.999999937 3.0
5 0.000000000 0.000000000 0.000000000 0.0
6 14.990478199 14.999904750 14.999999048 15.0
7 0.000000000 0.000000000 0.000000000 0.0
8 104.866744091 104.998666509 104.999986665 105.0
9 0.000000000 0.000000000 0.000000000 0.0
10 943.002111830 944.979997736 944.999799975 945.0
11 0.000000000 0.000000000 0.000000000 0.0
12 10362.054001516 10394.669964570 10394.996699588 10395.0

Table 2. Standardized central moments of dy for the plus-plus case.

Parameters: d1 = d2 = z and {(0,0), (1/2, 1), (1,0)}.
Order z = 0.9999 z = 0.999999 z = 0.99999999 N (0, 1)

3 -0.032656325 -0.003265983 -0.000326599 0.0
4 3.001639399 3.000016400 3.000000164 3.0
5 -0.326658273 -0.032659923 -0.003265986 0.0
6 15.035259628 15.000352666 15.000003527 15.0
7 -3.432783098 -0.342932064 -0.034292860 0.0
8 105.643263393 105.006430686 105.000064307 105.0
9 -41.260116637 -4.115251502 -0.411514386 0.0
10 956.901068056 945.118861509 945.001188600 945.0
11 -568.823119975 -56.586203271 -5.658324296 0.0
12 10628.732737598 10397.330855430 10395.023307907 10395.0
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Table 3. Standardized central moments of dy for the minus-minus case.

Parameters: −d1 = −d2 = z and {(0,0), (1/2, 1), (1,0)}.
Order z = 0.9999 z = 0.999999 z = 0.99999999 N (0, 1)

3 0.000002939 0.000000003 0.000000000 0.0
4 2.999080244 2.999990800 2.999999908 3.0
5 0.000029380 0.000000029 0.000000000 0.0
6 14.986209090 14.999862001 14.999998620 15.0
7 0.000308244 0.000000309 0.000000000 0.0
8 104.807032780 104.998068023 104.999980680 105.0
9 0.003694899 0.000003704 0.000000004 0.0
10 942.107516384 944.971020552 944.999710200 945.0
11 0.050733888 0.000050923 0.000000051 0.0
12 10347.314696658 10394.521843197 10394.995218301 10395.0

Table 4. Sign combinations on scaling parameters for three-dimensional
fractal interpolating functions based on two affine mappings.

Case r
(1)
1 r

(2)
1 r

(1)
2 r

(2)
2 Case r

(1)
1 r

(2)
1 r

(1)
2 r

(2)
2

1 + + + + 9 − + + −
2 + + + − 10 − − + +
3 + − + + 11 − + − +
4 + + − + 12 + − − −
5 − + + + 13 − − + −
6 + − + − 14 − + − −
7 + + − − 15 − − − +
8 + − − + 16 − − − −
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Figure 1
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Figure 2
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Figure 3
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Figure 4
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Figure 7
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